
© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIRDS06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 154

Automated Test Case Generation in Software

Testing

Anik Acharjee*, Dr. Amar Singh*

*School of Computer Applications, Lovely Professional University, Phagwara, Jalandhar, India.

Abstract— Testing is the crucial part in Software Development Mechanism. When software is developed by

the developer, it needs to be tested appropriately at the commencing stage. So, test case generation needs to be

proficient. But, this test case generation consumes more time gradually when the software expands with time.

In the literature, it is found that Manual Test Case Generation acquires infinite time. Such time cannot be

provided to accomplish the task of developing the software by the developer. Not only this, it increases the cost

of the software directly or in-directly. Due to which, the whole process needs to be computerized eventually.

Here, in this paper, several automated test case generation has been studied properly for further research

work.

Index Terms— Test Case Generation, testing, automation, test cases,

I. INTRODUCTION

Testing is the essential and mandatory task. It should be achieved at the commencing stage of the Software

Development Mechanism. In early 1980s, the software developer used to develop the software. It is then

manually tested by the tester. The tester utilizes the Manual Testing Mechanism. It has been analyzed

gradually that such mechanism consumes more time and costs. This effects the overall expansion of the

software, directly or in-directly. Software Testing Automation has different rewards – 1) a way of storing

domain/project/task Knowledge, 2) proof of completion of testing and 3) execution speed. Computerized

Software Testing safeguards reasonable time and worthy money. It improves reliability. It also shoot-up Test

Coverage. Not only these, it also improves Team Morale. It removes human error. It expands testing speed

without sacrificing quality. It does not require human interference. Manual Testing can become boring and

hence error prone. These two types of testing mechanism can be explained further with a suitable image -

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIRDS06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 155

Figure – 1 – Manual Testing v/s Automated Testing

II. LITERATURE SURVEY

The author in [1] discussed about Dynamic Many-Objective Sorting Algorithm (DynaMOSA). This

algorithm can be used in context to coverage testing. It has been proved that this approach is far better than

MOSA (Many-Objective Sorting Algorithm). DynaMOSA has shown 28 percentage of branch coverage as

compare to MOSA. It has also shown 27 percentage of mutation coverage as compare to MOSA.

Shahbazi A et. al. in [2] focused on black-box string test case generation methods. Two identical functions

are effectively used. Enormous string distance functions are incorporated as one of the objective. String

length distribution is the other objective. When both the objectives are used simultaneously with a multi-

objective optimization algorithm, string test cases are generated. These string test cases outperform the

traditional methods used earlier.

Shan L et. al. in [3] presented an approach called data mutation. In the research, it is found that it can

manipulate large number of test data. This approach is cost effective and can predict large percentage of

errors and faults.

Nebut C et. al in [4] utilized use case mechanism for automated test case generation. It has been

implemented on different object-oriented embedded software [4]. Here, statement coverage has been

implemented for the generated tests.

Huang H et. al. in [5] evaluated test case generation in fog computing programs. The author proposed a

mathematical model. This is based upon path coverage. Test-case-path relationship matrix is also proposed

for generated test cases.

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIRDS06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 156

Matinnejad R et. al. in [6] researched with Simulink Models. Here, the author proposed black-box test

generation approach. This approach is applied on Simulink models for Test Generation and Test

Prioritization [6]. It is basically applied on meta-heuristic search.

Bures M et. al. in [7] invented a framework for automating test cases. The system that needs to be tested is

used by screen-flow-based model. In this re-search, it is found that this model inherence the whole process

for the tester. The results show that this proposed framework has improved the time efficiency.

Yousaf N et. al. in [8] inaugurated model-based testing approach for Interaction Flow Modeling Language

(IFML) Models. It is basically evaluating test case generation for the Web User Interface (WUI) of IFML

Models [8]. Not only this, a generator tool called Model-Based User Interface Test Case (MBUITC) has

been incorporated as a part of the research. This approach can be more useful in the commencing stage.

Arrieta A et. al. in [9] presented multi-objective test generation and prioritization approach. This can be used

for testing and debugging industrial Cyber-Physical Systems (CPSs). Here, a fitness function is used with

four objectives. It is designed with various cross-over and mutation operators.

Singh R et. al. in [10] focused on object-oriented (OO) systems. It has been identified that generating Test

Cases for such systems is one of the tedious task. The proposed technique has been implemented after

analyzing two unique and adequate case studies. One is the sample of Sequence Diagrams (SDs) and another

is the SD of ATM (Automated Teller Machine).

III. Conclusion –

In this paper, various automated test case generation have been reviewed. It is found in the literature that

manual testing degrades the productivity of the software as compared to automated process. Automated

mechanism of evaluating test cases and prioritization has come the first priority for the testers in the

Software Testing domain. Automated Test case generation has many more benefits and comfort while

testing large and complex software in today’s robotic world.

REFERENCES

[1] Panichella A, Kifetew FM, Tonella P. Automated test case generation as a many-objective optimisation

problem with dynamic selection of the targets. IEEE Transactions on Software Engineering. 2017 Feb

2;44(2):122-58.

[2] Shahbazi A, Miller J. Black-box string test case generation through a multi-objective optimization. IEEE

Transactions on Software Engineering. 2015 Oct 7;42(4):361-78.

[3] Shan L, Zhu H. Generating structurally complex test cases by data mutation: A case study of testing an

automated modelling tool. The Computer Journal. 2009 Aug;52(5):571-88.

[4] Nebut C, Fleurey F, Le Traon Y, Jezequel JM. Automatic test generation: A use case driven approach.

IEEE Transactions on Software Engineering. 2006 Mar 27;32(3):140-55. [5] Huang H, Liu F, Yang Z, Hao

http://www.jetir.org/

© 2018 JETIR November 2018, Volume 5, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIRDS06022 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 157

Z. Automated test case generation based on differential evolution with relationship matrix for IFOGSIM

toolkit. IEEE Transactions on Industrial Informatics. 2018 Jul 18;14(11):5005-16.

[5] Matinnejad R, Nejati S, Briand LC, Bruckmann T. Test generation and test prioritization for simulink

models with dynamic behavior. IEEE Transactions on Software Engineering. 2018 Mar 1;45(9):919-44.

[6] Bures M, Frajtak K, Ahmed BS. Tapir: Automation support of exploratory testing using model

reconstruction of the system under test. IEEE Transactions on Reliability. 2018 Mar 2;67(2):557-80.

[7] Arrieta A, Wang S, Markiegi U, Sagardui G, Etxeberria L. Employing multi-objective search to enhance

reactive test case generation and prioritization for testing industrial cyber-physical systems. IEEE

Transactions on Industrial Informatics. 2017 Dec 29;14(3):1055-66.

http://www.jetir.org/

